VPX598

Quad DAC @ 12 GSPS with Quad ADC @ 3 GSPS, Kintex UltraScale™, 3U VPX

Key Features

- 3U FPGA Quad DAC and Quad ADC per VITA 46
- Xilinx Kintex UltraScale™ XCKU115 FPGA
- Quad ADC channels (AD9208) 14-bits @ 3 GSPS
- Quad DAC channels (AD9162 or AD9164) 16-bits @ 12 GSPS
- Two banks of 64-bit wide and a single bank of 32-bit wide DDR-4 for a total of 20 GB
- Health Management through dedicated Processor

Benefits

- Closely coupled ADC and DAC for low-latency response, dual channel for I/Q
- Xilinx UltraScale™ XCKU115 FPGA provides powerful compute resource
- Electrical, mechanical, software, and system-level expertise in house
- Full system supply from industry leader
- AS9100 and ISO9001 certified company

vadatech
THE POWER OF VISION
VPX598

The VPX598 provides quad ADC with sample rates of up to 3 GSPS (AD9208) at 14-bits and a quad DAC (Analog Devices AD9162 or AD9164) with update rates of up to 12 GSPS and direct RF synthesis at 6 GSPS, 16-bits making it suitable for signal capture/analysis applications such as COMINT/SIGINT, radar, research and instrumentation.

The unit has an on-board, re-configurable UltraScale™ XCKU115 FPGA which interfaces directly to ADC/DAC. The FPGA has interface to three banks of DDR4 memory channels (dual 64-bit wide and a single bank of 32-bit for a total of 20 GB). This allows for large buffer sizes to be stored during processing as well as for queuing the data to the host.

The module routes x8 high speed SERDES to the P1 that could be configured as PCIe/SRIO/10GbE/Aurora etc. and x8 high speed SERDES to P2 that could be configured for SRIO/10GbE/Aurora. The module has an on board dedicated health management CPU which complies with the OpenVPX standard.

The unit is available in a range of temperature and shock/vib specifications per ANSI/VITA 47, up to v3 and OS2.

Please contact VadaTech for details of Conduction Cooled versions.
Block Diagram

Figure 2: VPX598 Functional Block Diagram for Option A=0,1

Figure 3: Functional Block Diagram for Option A=2,3
Reference Design

VadaTech provides an extensive range of Xilinx based FPGA products. The FPGA products are in two categories; FPGA boards with FMC carriers and FPGA products with high speed ADC and DACs. The FPGA products are designed in various architectures such as AMC modules, PCIe cards and Open VPX.

VadaTech provides a reference design implementation for our FPGAs complete with VHDL source code, documentation and configuration binaries. The reference design focuses on the I/O ring of the FPGA to demonstrate low-level operation of the interconnections between the FPGA and other circuits on the board and/or backplane. It is designed to prove out the hardware for early prototyping, engineering/factory diagnostics and customer acceptance of the hardware, but it does not strive to implement a particular end application. The reference VHDL reduces customer time to develop custom applications, as the code can be easily adapted to meet customer’s application requirements.

The reference design allows you to test and validate the following functionality (where supported by the hardware):

- Base and Fabric channels
- Clocks
- Data transfers
- Memory
- User defined LEDs

Xilinx provides Vivado Design Suite for developing applications on Xilinx based FPGAs. VadaTech provides reference VHDL developed using the Vivado Design Suite for testing basic hardware functionality. The reference VHDL is provided royalty free to use and modify on VadaTech products, so can be used within applications at no additional cost. However, customers are restricted from redistributing the reference code and from use of this code for any other purpose (e.g. it should not be used on non-VadaTech hardware).

The reference VHDL is shipped in one or more files based on a number of ordering options. Not all ordering options have an impact on the FPGA and a new FPGA image is created for those options that have direct impact on the FPGA. Use the correct reference image to test your hardware.

For more information, refer to the FPGA reference design manual for your device which can accessed from customer support site along with the reference images.

Supported Software

- Default FPGA image stored in flash memory
- Linux BSP
- Build Scripts
- Device Driver
- Reference application projects for other ordering options

The user may need to develop their own FPGA code or adapt VadaTech reference code to meet their application requirements. The supplied pre-compiled images may make use of hardware evaluation licenses, where necessary, instead of full licenses. This is because VadaTech does not provide licenses for the Vivado tool or Xilinx IP cores, so please contact Xilinx where these are required.

Xilinx also provides System Generator tools for developing Digital Signal Processing (DSP) applications.

See the following links:

Xilinx Vivado Design Suite, Xilinx System Generator for DSP.
### Specifications

#### Architecture

**Physical**
- **Dimensions**: 3U, 2” pitch

**FPGA**
- Xilinx Kintex UltraScale™ XCKU115

#### Configuration

**Power**
- VPX598 ~70 W (dependent on FPGA load), could be as high as 85 W

**Memory**
- Two banks of DDR4, 64-bit wide, 1 bank of DDR4 32-bit wide (20 GB total)

**Front Panel**
- SSMC: 10x for Analog In (4), Analog Out (4), Analog Clock and Digital Clock
- Micro USB: RS-232 from Health Management and RS-232 from FPGA

**On-board Interfaces**
- None

**VPX Interfaces**
- **Slot Profiles**: See ordering options
- **Rear IO**: P1: x8 high speed serial links (PCIe/10GbE/SRIO/Aurora per FPGA load)
- P2: x8 high speed serial links (10GbE/SRIO/Aurora per FPGA load)

**Power Supplies**
- P0: VS1 = 12 V

#### Other

**MTBF**
- MIL Handbook 217-F@ TBD hrs

**Certifications**
- Designed to meet FCC, CE and UL certifications, where applicable

**Standards**
- VadaTech is certified to both the ISO9001:2000 and AS9100B:2004 standards

**Warranty**
- Two (2) years

#### INTEGRATION SERVICES AND APPLICATION-READY PLATFORMS

VadaTech has a full ecosystem of OpenVPX, ATCA and MTCA products including chassis platforms, shelf managers, AMC modules, Switch and Payload Boards, Rear Transition Modules (RTMs), Power Modules, and more. The company also offers integration services as well as pre-configured Application-Ready Platforms. Please contact VadaTech Sales for more information.
### Ordering Options

**VPX598 – ABC-DEF-GHJ**

<table>
<thead>
<tr>
<th>A = Clock Options</th>
<th>D = FPGA Speed</th>
<th>G = Applicable Slot Profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Front panel clock, Standard (XO)</td>
<td>1 = Reserved</td>
<td>0 = 10 HP</td>
</tr>
<tr>
<td>1 = Front panel clock, Stratum-3 (TCXO)</td>
<td>2 = High</td>
<td></td>
</tr>
<tr>
<td>2 = On-board wideband PLL, Standard (XO)</td>
<td>3 = Highest*</td>
<td></td>
</tr>
<tr>
<td>3 = On-board wideband PLL, Stratum-3 (TCXO)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B = DAC</th>
<th>E = ADC</th>
<th>H = Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Quad DAC Channels (AD9162)</td>
<td>0 = No DAC</td>
<td>See Environmental Specification Table below</td>
</tr>
<tr>
<td>1 = Quad DAC Channels (AD9164)</td>
<td>1 = Dual ADC Channels (AD9208)</td>
<td></td>
</tr>
<tr>
<td>2 = No DAC</td>
<td>2 = No ADC</td>
<td></td>
</tr>
<tr>
<td>3 = Octal DAC Channels (AD9162)+</td>
<td>3 = Octal ADC Channels (AD9208)+</td>
<td></td>
</tr>
<tr>
<td>4 = Octal DAC Channels (AD9164)+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C = Utilizing the ADC/DAC Nyquist Zones</th>
<th>F = PCIe Option (P1)**</th>
<th>J = Conformal Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 1st/2nd</td>
<td>0 = No PCIe</td>
<td>0 = No coating</td>
</tr>
<tr>
<td>1 = 2nd/3rd</td>
<td>1 = PCIe x4</td>
<td>1 = Humiseal 1A33 Polyurethane</td>
</tr>
<tr>
<td></td>
<td>2 = PCIe x8</td>
<td>2 = Humiseal 1B31 Acrylic</td>
</tr>
</tbody>
</table>

Notes: *Minimum Order Quantity applies for these FPGA SKU's.
**When the ports are not PCIe the lanes are electrically compatible with SRIO, XAUI, and other SerDes protocols.
+Option E must be 2 (E = 2) to select this option, Minimum Order Quantity applies.
++Option B must be 2 (B = 2) to select this option, Minimum Order Quantity applies.

### Environmental Specification

#### Air Cooled

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>Storage Temperature</th>
<th>Operating Vibration</th>
<th>Storage Vibration</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1*</td>
<td>C1*</td>
<td>V2*</td>
<td>OS1* (20g)</td>
<td>95% non-condensing</td>
</tr>
<tr>
<td>(0°C to +55°C)</td>
<td>(-40°C to +70°C)</td>
<td>(0.04 g2/Hz max)</td>
<td>(20g)</td>
<td></td>
</tr>
<tr>
<td>AC3*</td>
<td>C3*</td>
<td>V2*</td>
<td>OS1* (20g)</td>
<td>95% non-condensing</td>
</tr>
<tr>
<td>(-40°C to +100°C)</td>
<td>(-50°C to +100°C)</td>
<td>(0.04 g2/Hz max)</td>
<td>(20g)</td>
<td></td>
</tr>
</tbody>
</table>

#### Conduction Cooled

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>Storage Temperature</th>
<th>Operating Vibration</th>
<th>Storage Vibration</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1*</td>
<td>C1*</td>
<td>V3*</td>
<td>OS2* (40g)</td>
<td>95% non-condensing</td>
</tr>
<tr>
<td>(0°C to +55°C)</td>
<td>(-40°C to +70°C)</td>
<td>(0.1 g2/Hz max)</td>
<td>(40g)</td>
<td></td>
</tr>
<tr>
<td>CC3*</td>
<td>C3*</td>
<td>V3*</td>
<td>OS2* (40g)</td>
<td>95% non-condensing</td>
</tr>
<tr>
<td>(-40°C to +100°C)</td>
<td>(-50°C to +100°C)</td>
<td>(0.1 g2/Hz max)</td>
<td>(40g)</td>
<td></td>
</tr>
<tr>
<td>CC4*</td>
<td>C3*</td>
<td>V3</td>
<td>OS2* (40g)</td>
<td>95% non-condensing</td>
</tr>
<tr>
<td>(-40°C to +85°C)</td>
<td>(-50°C to +100°C)</td>
<td>(0.1 g2/Hz max)</td>
<td>(40g)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Nomenclature per ANSI/VITA 47. Contact local sales office for conduction cooled (H = 2, 3, 4).

### Available Signal Bandwidth

<table>
<thead>
<tr>
<th>Available Signal Bandwidth (MHz)</th>
<th>Interpolation (Minimum)</th>
<th>Maximum Fdata (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>Bypass x1</td>
<td>3000</td>
</tr>
<tr>
<td>1250</td>
<td>Bypass x1</td>
<td>Fdac = 5000</td>
</tr>
<tr>
<td>80% to 90% of 1250 (total I/Q)</td>
<td>Decimation x4</td>
<td>Fdac/4 = 1250</td>
</tr>
</tbody>
</table>

Notes: *Minimum Order Quantity applies for these FPGA SKU's.
Related Products

- VPX516
  - 3U FPGA carrier for FPGA Mezzanine Card (FMC) per VITA 46 and VITA 57
  - Xilinx Virtex-7 690T FPGA in FFG-1761 package
  - High-performance clock jitter cleaner

- VPX592
  - 3U FPGA carrier for FPGA Mezzanine Card (FMC) per VITA 46 and VITA 57
  - Xilinx Kintex UltraScale™ XCKU115 FPGA
  - High-performance clock jitter cleaner

- VPX599
  - Xilinx Kintex UltraScale™ XCKU115 FPGA
  - Dual ADC @ 6.4 GSPS 12-bits
  - Dual DAC @ 12 GSPS 16-bits (AD9162 or AD9164)
Choose VadaTech

We are technology leaders
• First-to-market silicon
• Constant innovation
• Open systems expertise

We commit to our customers
• Partnerships power innovation
• Collaborative approach
• Mutual success

We deliver complexity
• Complete signal chain
• System management
• Configurable solutions

We manufacture in-house
• Agile production
• Accelerated deployment
• AS9100 accredited

Trademarks and Disclaimer
The VadaTech logo is a registered trademark of VadaTech, Inc. Other registered trademarks are the property of their respective owners. AdvancedTCA™ and the AdvancedMC™ logo are trademarks of the PCI Industrial Computers Manufacturers Group. All rights reserved. Specification subject to change without notice.

© 2018 VadaTech Incorporated. All rights reserved.
DOC NO. 4FM737-12 REV 01 | VERSION 1.2 – SEP/18