PMC-16AO2MF
Two-Channel 16-Bit High-Speed Analog Output PMC Board
With 400,000 Samples per Second per Channel, and Independent Clocking

Features:
- Two Precision 3-Wire Balanced Differential High-Speed Analog Output Channels;
- 16-Bit Resolution; D/A Converter per Channel
- Data Rates to 400 K-Samples per Second per Channel; 800 KSPS Aggregate Rate
- Output Ranges of ±12V, ±10V or ±5V
- Two Independent 32 K-Sample Analog Output FIFO Buffers
- Output Data Buffer Size Adjustable from Four Samples to up to 32 K-Samples
- High Stability Timebase; 20PPM
- Continuous and Burst Clocking Modes
- Seamless Waveform Sequencing
- Data Rates Controlled by Independent Internal Clocks, or by an External Clock
- Supports Multiboard Synchronization;
- Software-Selectable TTL or Differential External Clock I/O
- Internal Autocalibration of Both Channels
- High Accuracy; 0.023% FSR max error on ±10V Range, INL = 0.007%
- Fast Settling; 5 us to 0.1%; 8 us to 0.01%; with No-filter Option
- Bidirectional Byte-Wide Digital Port
- Integral Shield Assures Minimum Susceptibility to Radiated Noise in PMC Environments
- VxWorks™ and NT Drivers™

Applications:
- Precision Voltage Source
- Industrial Robotics
- Acoustic Research
- Audio Synthesis
- Waveform Synthesis
- Arbitrary Functions

REV-090406

General Standards Corporation
8302A Whitesburg Drive · Huntsville, AL 35802
Phone: (256) 880-8787 or (800) 653-9970 FAX: (256) 880-8788 Email: Solutions@GeneralStandards.com
Functional Description:

The PMC-16AO2MF board provides two independent 3-wire balanced differential 16-bit D/A converter channels, and all supporting functions necessary for adding precision high-speed analog output capability to a PMC host. The board is functionally compatible with the IEEE PCI local bus specification Revision 2.2, and supports the "plug-n-play" initialization concept. Unique FIFO buffer controls support the seamless sequencing of successive waveforms. In less demanding applications, the outputs can be updated individually. Both TTL and differential I/O ports support multiboard synchronization.

A PCI interface adapter provides the interface between the controlling PCI bus and the internal local controller (Figure 1). Two analog output channels are controlled through independent analog output FIFO buffers, and can be updated either simultaneously or sequentially. The clocking rate for each output channel can be controlled either by a dedicated internal rate generator, or by an external clock. The local controller manages all local configuration and data manipulation functions, including autocalibration. Analog output levels are initialized to zero (midrange).

Internal autocalibration networks permit calibration to be performed without removing the board or host from the system. This feature produces the optimum calibration situation, in which the board is calibrated in its actual operating environment.

![Figure 1. PMC-16AO2MF Board; Functional Organization](image)

The board is designed for minimum off-line maintenance, and includes internal monitoring features that eliminate the need for disconnecting or removing the module from the system for calibration. All input and output system connections are made through a single metal-shrouded I/O connector. Power requirements consist of +5 VDC in compliance with the PCI specification, and operation over the specified temperature range is achieved with conventional convection cooling.
ELECTRICAL SPECIFICATIONS

At +25 °C, with specified operating voltages

- **Output Characteristics:**
 - **Configuration:** Two balanced differential 3-wire (true/complement) analog output channels, with a dedicated 16-Bit DAC per channel
 - **Voltage Ranges:** Factory configured as ±12 Volts, ±10 Volts or ±5 Volts
 - **Output Resistance:** Output: 1.0 Ohm maximum
 - **Output protection:** Withstands sustained short-circuiting to ground without damage
 - **Load Current:** Zero to ±5 milliamps
 - **Load Capacitance:** Stable with zero to 2000 pF shunt capacitance
 - **Settling Time:**
 - No Filter: 5 us to 0.1%, 8 us to 0.01%
 - 10 kHz Filter: 130 us to 0.1%, 160 us to 0.01%
 - **Noise:**
 - No Filter: 4 mVRMS, 10Hz-10KHz
 - 10 kHz Filter: 2 mVRMS, 10Hz-10KHz
 - **Glitch Impulse:**
 - ±5V Range: 5 nV-Sec
 - ±10, ±12V Range: 8 nV-Sec

- **Transfer Characteristics:**
 - **Resolution:** 16 Bits (0.0015 percent of FSR)
 - **Sample Clocking Rate:**
 - Master Rate Clock: 460 to 400,000 samples per second per channel
 - Adjustable-Rate Clock: 460 to 375,000 samples per second per channel
 - External Rate Clock: Zero to 375,000 samples per second per channel
 - **DC Accuracy:**
 - (Max error, no-load)
 - Range Midscale Accuracy ±Fullscale Accuracy
 - ±12V ±2.5mv ±5.2mv
 - ±10V ±2.0mv ±4.6mv
 - ±5V ±1.5mv ±2.9mv
 - **Bandwidth, -3dB:**
 - No output filter option: 300 kHz typical
 - 10 kHz filter option: 10 kHz typical (Single-pole lowpass)
 - **Crosstalk Rejection:** 80 dB, DC-10 kHz
 - **Common Mode Offset:** ±10mV from output return.
 - **Integral Nonlinearity:** ±0.007 percent of FSR, maximum
 - **Differential Nonlinearity:** ±0.003 percent of FSR, maximum
Operating Modes and Controls

Sample Clock Source: Internal rate generators, external hardware clock input, or software clock. The external clock output can be used for synchronization of multiple PMC-16AO2MF boards.

Each output channel can be clocked from an independent internal rate generator, or both channels can be clocked synchronously. Rate generator frequencies are independently adjustable from 16MHz to 32MHz with 0.2 percent resolution and 0.08 percent accuracy, and are derived from the local crystal-controlled master clock. Rate generator outputs are divided by two independent 16-bit counters to provide the output channel clocks.

External sync I/O is software-selectable as either TTL-compatible, or as 2-wire LVDS differential pairs. The Sync I/O signals can be operated either as output clocks, or as burst triggers.

In addition to the basic rate generator frequencies that are adjustable with 0.2 percent resolution, up to eight custom fixed frequencies can be specified in the 16-32 MHz range as a factory option. Clock stability is 20PPM.

Burst Trigger: Software control bit, or external sync input.

Clocking Modes: Continuous or burst

Active Buffer Size: From 4 output values to 32K-values in 2:1 steps; both buffers.

Buffer Modes: Circular (closed) for periodic waveforms, or Open for continuous functions.

Data Format: Software selected as offset binary or as Two's complement

AUTOCALIBRATION

During autocalibration, both analog channels are calibrated to a single precision internal voltage reference that is adjustable with a single trimmer. Auto calibration has a typical duration of 1-3 seconds, and can be invoked at any time after initialization.

PCI INTERFACE

Analog Output Buffers

Analog output data is written to the board through two registers that serve as FIFO buffer ports. Each buffer is 17 bits wide, has a software-controlled capacity of from four output values to 32K values, and is right justified to the LSB in the D32 PCI data path. Output data is a 16-bit field that is software-configurable in either Two's complement or offset binary format. The 17th bit is used as an end-of-frame (EOF) flag for tracking functions through the buffer.
Compatibility: Conforms to PCI Specification 2.1, with D32 read/write transactions. Supports "plug-n-play" initialization. Provides one multifunction interrupt. Supports DMA transfers to the output buffers as bus master.

MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS

Power Requirements
+5VDC ±0.2 VDC at 1.1 Amps maximum, 0.9 Amp typical. Outputs fully loaded.
Maximum Power Dissipation: Side-1: 4.7 Watts maximum, 3.8 Watts typical
Side-2: 1.0 Watt maximum, 0.8 Watt typical.

Physical Characteristics
- Height: 13.5 mm (0.53 in)
- Depth: 149.0 mm (5.87 in)
- Width: 74.0 mm (2.91 in)
Shield: Side 1 is protected by an EMI shield.

Environmental Specifications
- Ambient Temperature Range: Operating: 0 to +65 degrees Celsius inlet air
Storage: -40 to +85 degrees Celsius
- Relative Humidity: Operating: 0 to 80%, non-condensing
Storage: 0 to 95%, non-condensing
- Altitude: Operation to 10,000 ft.
- Cooling: Conventional convection cooling.

ORDERING INFORMATION
Specify the basic product model number (PMC-16AO2MF), followed by an option suffix "-A-B-C" as indicated in the table below. For example, model number PMC-16AO2MF-5V-NF-4CF describes a board with a ±5 Volt output range, no output filters, and four custom frequencies.

<table>
<thead>
<tr>
<th>Optional Parameter</th>
<th>Value</th>
<th>Specify Option As:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Range:</td>
<td>±5 Volts</td>
<td>A = 5V</td>
</tr>
<tr>
<td></td>
<td>±10 Volts</td>
<td>A = 10V</td>
</tr>
<tr>
<td></td>
<td>±12 Volts</td>
<td>A = 12V</td>
</tr>
<tr>
<td>Output Lowpass Filter:</td>
<td>No output Filter</td>
<td>B = NF</td>
</tr>
<tr>
<td></td>
<td>10 kHz Output Filter</td>
<td>B = F</td>
</tr>
<tr>
<td>Custom Rate-Generator Frequencies:</td>
<td>* No custom frequencies</td>
<td>C = NCF</td>
</tr>
<tr>
<td>(8 Maximum)</td>
<td>Custom frequencies</td>
<td>C = (1-8)CF</td>
</tr>
</tbody>
</table>

* Specify required frequencies and accuracies (±0.004-0.100 percent). Contact factory for availability.
SYSTEM I/O CONNECTIONS

Table 1. System Connector Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANA OUTPUT 00 LO</td>
<td>1</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>2</td>
<td>ANA OUTPUT 00 HI</td>
<td>2</td>
<td>DIGIO 00</td>
</tr>
<tr>
<td>3</td>
<td>OUTPUT RETURN</td>
<td>3</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>4</td>
<td>OUTPUT RETURN</td>
<td>4</td>
<td>DIGIO 01</td>
</tr>
<tr>
<td>5</td>
<td>ANA OUTPUT 01 LO</td>
<td>5</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>6</td>
<td>ANA OUTPUT 01 HI</td>
<td>6</td>
<td>DIGIO 02</td>
</tr>
<tr>
<td>7</td>
<td>OUTPUT RETURN</td>
<td>7</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT RETURN</td>
<td>8</td>
<td>DIGIO 03</td>
</tr>
<tr>
<td>9</td>
<td>VRANGE RETURN</td>
<td>9</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>10</td>
<td>VRANGE OUTPUT</td>
<td>10</td>
<td>DIGIO 04</td>
</tr>
<tr>
<td>11</td>
<td>VRANGE RETURN</td>
<td>11</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>12</td>
<td>OUTPUT RETURN</td>
<td>12</td>
<td>DIGIO 05</td>
</tr>
<tr>
<td>13</td>
<td>OUTPUT RETURN</td>
<td>13</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>14</td>
<td>OUTPUT RETURN</td>
<td>14</td>
<td>DIGIO 06</td>
</tr>
<tr>
<td>15</td>
<td>DIGITAL RTN</td>
<td>15</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>16</td>
<td>MCLK00</td>
<td>16</td>
<td>DIGIO 07</td>
</tr>
<tr>
<td>17</td>
<td>DIGITAL RTN</td>
<td>17</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>18</td>
<td>MCLK01</td>
<td>18</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>19</td>
<td>DIGITAL RTN</td>
<td>19</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>20</td>
<td>TTL SYNC INP L</td>
<td>20</td>
<td>TTL SYNC OUT L</td>
</tr>
<tr>
<td>21</td>
<td>DIGITAL RTN</td>
<td>21</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>22</td>
<td>DIGITAL RTN</td>
<td>22</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>23</td>
<td>DIGITAL RTN</td>
<td>23</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>24</td>
<td>TTL CLK INP L</td>
<td>24</td>
<td>TTL CLK OUT L</td>
</tr>
<tr>
<td>25</td>
<td>DIGITAL RTN</td>
<td>25</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>26</td>
<td>DIGITAL RTN</td>
<td>26</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>27</td>
<td>DIFF SYNC INP LO</td>
<td>27</td>
<td>DIFF SYNC OUT LO</td>
</tr>
<tr>
<td>28</td>
<td>DIFF SYNC INP HI</td>
<td>28</td>
<td>DIFF SYNC OUT HI</td>
</tr>
<tr>
<td>29</td>
<td>DIGITAL RTN</td>
<td>29</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>30</td>
<td>DIGITAL RTN</td>
<td>30</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>31</td>
<td>DIFF CLK INP LO</td>
<td>31</td>
<td>DIFF CLK OUT LO</td>
</tr>
<tr>
<td>32</td>
<td>DIFF CLK INP HI</td>
<td>32</td>
<td>DIFF CLK OUT HI</td>
</tr>
<tr>
<td>33</td>
<td>DIGITAL RTN</td>
<td>33</td>
<td>DIGITAL RTN</td>
</tr>
<tr>
<td>34</td>
<td>DIGITAL RTN</td>
<td>34</td>
<td>DIGITAL RTN</td>
</tr>
</tbody>
</table>

Figure 2. System Input/Output Connector

System Mating Connector:
- 68-Pin 2-row 0.050" dual-ribbon cable socket connector: Metal Shell
- KEL P/N 8840-068-174AD

Contact factory for availability of the 68-pin AMP SCSI-3 connector.

General Standards Corporation assumes no responsibility for the use of any circuits in this product. No circuit patent licenses are implied. Information included herein supersedes previously published specifications on this product and is subject to change without notice.

General Standards Corporation

8302A Whitesburg Drive · Huntsville, AL 35802

Phone: (256) 880-8787 or (800) 653-9970 Fax: (256) 880-8788 Email: Solutions@GeneralStandards.com