VMIVME-2210 Specifications

64-Channel Latching or Momentary Relay Board with Built-in-Test

Features:

- Latching contacts will hold their state with power off
- Available in latching and nonlatching versions
- 1 Form C contacts (SPDT) with 96-conductor cable
- 1 Form A contacts (SPST) with 64-conductor cable
- 8-, 16-, or 32-bit data transfers
- Supports real time and offline fault detection and isolation
- 2.0A current rating
- Protection from relays changing during power up/down
- Compatible with ANSI/IEEE C37.90.1-1982 surge protection when used with companion surge suppression panel (for example, VMIVME-3459)
This arrangement permits 64-conductor cables to be used for contacts on Row C of the connector as shown in Figure 1. N.O. contacts are on Row A of the connectors and the Common contact points. The N.O. and (Normally Closed), and the Common contact points. When the contact BIT logic is read, a logic one is returned.

The Control Data Registers are also monitored because the relays take a long time (7ms maximum) to change their contacts. VME accesses of the board can execute so quickly the relays seem to be faulty resulting in erroneous conclusions. To prevent this the user can check the Data Register’s state, instead of waiting for the relay’s contacts to close.

When the contact BIT logic is read, a logic one is returned. The N.C. contacts provide a logic one from the contacts for a long time (7ms maximum) to change their contacts. VME accesses of the board can execute so quickly the relays seem to be faulty resulting in erroneous conclusions. To prevent this the user can check the Data Register’s state, instead of waiting for the relay’s contacts to close.

Board Functions: Sixty-four one Form C latching relay contacts via two 96-pin DIN connectors. One extra set of contacts (the N.C. set) is used for BIT. Latching relays hold their state even with power removed until commanded to change.

Board Addressing: Twenty jumpers are used to select the base address of the board. One jumper determines the address space (standard data or short supervisory or nonprivileged I/O space).

Addressing Scheme: The base address of this board contains the board ID. Stacked above this 16-bit word is a 16-bit CSR. The Output Registers are placed at the next longword boundary above the CSR. Finally, the Contact Registers are stacked above the Output Registers. The Output and the Contact Registers are addressable as sixteen 8-bit bytes, eight 16-bit words, or four 32-bit longwords, located on any 128-bit boundary within standard data or short supervisory or nonprivileged I/O space.

Built-in-Test: Board testing is accomplished by performing a read operation. Reading the address of the relay in question will place the state of its Data Register on the bus. Reading the Contact Register transfers the state of the second N.C. contact to the bus. Both the data controlling the relay and the contact state can now be compared. This is done because the relay takes so long (7 ms maximum) to change its state. With this information, the user can determine when the relay contacts have changed state.

Nonlatching Option: If the nonlatching option is ordered, then standard relays are used. The contact data is not affected. However, the contacts will NOT hold when power is interrupted. This option will permit resets and power loss to place the relays in their normal position. Thus, N.O. contacts will open and the N.C. contacts will close. All other board operations are the same as those for the latching version.

Ordering Options

<table>
<thead>
<tr>
<th>September 5, 2007 800-002210-000 K</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMIVME-2210</td>
<td>–</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

A = Relay Type

0 = Latching Relays

1 = Nonlatching Relays

B = Number of Channels

0 = 64-Channel

1 = 32-Channel

C = 0 (Options reserved for future use.)

Functional Characteristics

Introduction: The VMIVME-2210 provides 64 One Form C (SPDT) contacts to the user via two 96-pin DIN connectors. These relays are the magnetic latching type which means that, once a contact is set it will remain set (even if power is removed from the relay) until it is reset. All three contact points are brought out via the connector. They are the N.O. (Normally Open), N.C. set) is used for BIT. Latching relays hold their state even with power removed until commanded to change.

The VMIVME-2210 is populated with double pole relays, but only one pole is brought out to the user. The other pole is used by the Built-in-Test (BIT) logic. The state of the controlling Data Registers or the N.C. poles is read during read accesses of the board. The Control Registers are located at the same address as the relays. This allows the user to monitor both the state of the user contacts and the Control Registers. Because the read pole and the user’s pole are controlled by the same coil, BIT can monitor the user’s contacts via the N.C. contacts of the second pole.

The N.C. contacts provide a logic one from the contacts for a logic one written to the Data Register. This provides positive data feedback from the contact BIT logic. When a logic one is written to the Control Register, it activates the relay which causes the N.O. contacts to close and the N.C. contacts to open. When the contact BIT logic is read, a logic one is returned.

Board Functions: Sixty-four one Form C latching relay contacts via two 96-pin DIN connectors. One extra set of contacts (the N.C. set) is used for BIT. Latching relays hold their state even with power removed until commanded to change.

Board Addressing: Twenty jumpers are used to select the base address of the board. One jumper determines the address space (standard data or short supervisory or nonprivileged I/O space).

Addressing Scheme: The base address of this board contains the board ID. Stacked above this 16-bit word is a 16-bit CSR. The Output Registers are placed at the next longword boundary above the CSR. Finally, the Contact Registers are stacked above the Output Registers. The Output and the Contact Registers are addressable as sixteen 8-bit bytes, eight 16-bit words, or four 32-bit longwords, located on any 128-bit boundary within standard data or short supervisory or nonprivileged I/O space.

Built-in-Test: Board testing is accomplished by performing a read operation. Reading the address of the relay in question will place the state of its Data Register on the bus. Reading the Contact Register transfers the state of the second N.C. contact to the bus. Both the data controlling the relay and the contact state can now be compared. This is done because the relay takes so long (7 ms maximum) to change its state. With this information, the user can determine when the relay contacts have changed state.

Nonlatching Option: If the nonlatching option is ordered, then standard relays are used. The contact data is not affected. However, the contacts will NOT hold when power is interrupted. This option will permit resets and power loss to place the relays in their normal position. Thus, N.O. contacts will open and the N.C. contacts will close. All other board operations are the same as those for the latching version.
Output Characteristics
Contact Material: Silver alloy (Gold clad)
Maximun Switching Voltage: 220VDC, 250VAC resistive load
Maximun Switching Current: 2A DC, AC resistive load
Switching Power: 60W or 125VA resistive
Initial Contact Resistance: 50mW (by voltage drop 6VDC 1A)
Contact Connect Times - Opening or Closing: 6.5ms maximum with .5ms typical bounce time
Dielectric Strength: 750VAC, 50/60 Hz for 1 minute between contacts of the same pole
Surge Withstand Voltage: Conforms to Part 68 of FCC Regulations
Service Life: 5 × 10⁵ minimum operations at rated current

Physical/Environmental Specifications
Dimensions: 6U double slot Eurocard form factor
Height 9.2 in. (233.4mm)
Depth 6.3 in. (160mm)
Thickness 0.8 in. (20.3mm)
Power Requirements: +5VDC (±5 percent), 4A maximum

Temperature:
Operating: 0 to +55° C
Storage: -20 to +85° C

Relative Humidity – 20% to 80%, noncondensing

Cooling: Forced air convection

Output Connector: Two front panel mounted 96-pin DIN connectors

MTBF: Contact Factory

Trademarks
All registered trademarks are the property of their respective owners.
Figure 1. A Typical Relay Circuit