VMIVME-2170A Specifications

32-bit Optically Isolated Digital Output

Features:
- 32 optically isolated outputs
- 2.5 or 300 mA outputs
- Externally supplied pull-up voltage for maximum isolation
- Field-configurable pull-up resistors
- Source or sink output capability with low current option
- High output voltage tolerance to 30 V normal mode
- High isolation potential; 1 kV sustained, 6 kV pulsed
- Positive or negative true options
- 8- or 16-bit data transfers
- On-board DIP switches provide 14-bit board address selection
- Double Eurocard format with front panel
- Field-selectable nonprivileged or supervisory short I/O transfers

Applications:
- Digital control from VMEbus
- Elimination of system ground loops
- Control in high-electrical noise environments
- Control of multiple-potential system components
VMIVME-2170A 32-bit Optically Isolated Digital Output

Ordering Options

<table>
<thead>
<tr>
<th>March 9, 2006 800-102170-000 F</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMIVME-2170A</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A = Data Polarity

1 = Positive True
2 = Negative True

B = Output Current

0 = 2.5 mA
1 = 300 mA

CDE = 0 (Options reserved for future use)

F = Special Sales Order

0 = Standard VME front panel w/o conformal coating
1 = Reserved
2 = Standard VME front panel w/ conformal coating

VMEdbus Access: Address modifier bits are decoded to support either short supervisory or nonprivileged short I/O access. A single jumper is provided to support this option and is factory configured for short supervisory I/O access.

Data Transfer Type: D16, D8(E0)

Access Time: 250 ns maximum

Output Characteristics

Output Current Modes: See Figure 1 and Table 1 for high and low current options.

Output Configurations:

- Current sinking, with pull-up resistor
- Current sinking, no pull-up resistor
- Voltage sourcing (low current model)

Output Leakage Current:

- High Current Version: 500 μA maximum at $V_{CE} = 50\text{ V}$ and $T_A = 70\text{ C}$
- Low Current Version: 50 nA maximum at $V_{CE} = 10\text{ V}$ and $T_A = 70\text{ C}$

Output Voltage: 30 V maximum

Switching Time: See Table 1

Output Isolation: 10 MΩ, minimum

Isolation Voltage: 1,000 V maximum sustained field-to-VMEbus, 6,000 V for one second. Sustained channel-to-channel potential is 500 V maximum.

Physical/Environmental Specifications

Dimensions: Double height Eurocard

- Height: 9.2 in. [233.4mm]
- Depth: 6.3 in. [160mm]
- Thickness: 0.8 in. [20.3mm]

Power Requirements:

- 1.5 A [typical] at +5 VDC
- 2.2 A [maximum]

Airflow: Forced air convection, 400 CFM

Temperature:

- Operating: 0 to +55° C
- Storage: -20 to +85° C

Altitude:

- Operating: 0 – 10,000 ft [3,000m]
- Storage: -20 to +85° C

Humidity:

- Operating: relative humidity 20% to 80%, noncondensing
- Storage: 8% to 90%, noncondensing

MTBF: 153,100 hours (stress)

Output Connector: Front panel 64-pin DIN connector. Refer to the Connector Data table on the Ordering Options sheet.

Functional Characteristics

Introduction: The VMIVME-2170A Optically Coupled Digital Output board consists of VMEdbus compatibility logic, data control logic, four 8-bit output registers, and 32 optically isolated high-level outputs. The board is implemented as a double Eurocard form factor PC board, and provides all necessary address decoding and data transfer control logic to accept both 8- and 16-bit data transfers. Optical couplers isolate the 32 outputs from each other and from the VMEdbus. Both supervisory and nonprivileged data transfers are supported.

The VMIVME-2170A’s typical output configuration is shown in Figure 1. The internal configuration of the VMIVME-2170A board is shown in Figure 2.

Board Function: 32-bit, optically isolated, digital output board, designed and optimized specifically for the VMEdbus. Featuring high isolation, the VMIVME-2170A board is shown in Figure 2.

Compatibility: The VMIVME-2170A is a standard double height VME printed circuit board and is electrically and mechanically compatible with the VMEdbus.

Addressing Scheme: Addressable as four 8-bit ports or two 16-bit registers, located on any 32-bit boundary within the short supervisory or short nonprivileged I/O space.

Board Address: The board address is selected by 14 on-board DIP switches. Operation is supported in any available slot in the VMEdbus backplane, except slot 1.
Related Products and Applications
GE Fanuc Embedded Systems offers a broad range of digital I/O products for VME systems and supports these products with comprehensive applications information. Contact GE Fanuc Embedded Systems for a description of current products and a list of application guides.

Specifying Factory Options
To accommodate the variety of control output requirements encountered in VMEbus applications, the following VMIVME-2170A characteristics can be specified as factory options:

- **Data polarity**: Positive or negative true
- **Pull-up resistor sockets**: User may select and install pull-up resistors
- **Output current**: 2.5 or 300 mA sink

Refer to the Ordering Options to obtain the part number codes associated with each option.

Output current is specified either as zero for low (2.5 mA) current, or as one for high (300 mA) current. All low current outputs are mutually isolated from each other and from the VMEbus. High current outputs are isolated in groups of four outputs.

The user chooses the pull-up resistor. DIP sockets are installed on the board for these resistor networks. The type of resistor DIPs used must be the isolated type. This DIP has individual resistors between pins across the package. For example, a resistor is between Pins 1 and 16. The value of this resistor is a function of the voltage across it and the power it can dissipate. For example, a 1/8 W DIP with an external voltage \(V_{\text{ext}} \) of 48 V would have a value of 18 kΩ \(R = V^2/P \) as a minimum.

Trademarks
GE Fanuc Embedded Systems logo is a registered trademark of GE Fanuc Embedded Systems. Other registered trademarks are the property of their respective owners.
VMIVME-2170A 32-bit Optically Isolated Digital Output

Figure 1. VMIVME-2170A Typical Output Configuration

* Install only Jxx for low current option.
* Install the resistors and transistors for high current option.

Figure 2. VMIVME-2170A Functional Block Diagram
Table 1. Output Characteristics

HIGH CURRENT OPTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE}</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE}(SAT)$</td>
<td>$I_{CE} = 300 mA$</td>
<td></td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{CE}</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$T_{D , ON}$</td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>$T_{D , OFF}$</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>$V_{CE} = 50 V , T_{A} = 70^\circ C$</td>
<td></td>
<td></td>
<td>500</td>
<td>μA</td>
</tr>
</tbody>
</table>

LOW CURRENT OPTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE}</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE}(SAT)$</td>
<td>$I_{CE} = 2.5 mA$</td>
<td></td>
<td>0.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{CE}</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$T_{D , ON}$</td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>$T_{D , OFF}$</td>
<td></td>
<td>25</td>
<td></td>
<td>50</td>
<td>μs</td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>$V_{CE} = 10 V , I_{F} = 0$</td>
<td></td>
<td></td>
<td>50</td>
<td>nA</td>
</tr>
</tbody>
</table>