Description

The SRXL is a mezzanine board that pairs with an EDT main board (for PCI or PCI Express) to accept simultaneous RF inputs in the L-band range of 925 to 2175 MHz and the IF range of 65 to 225 MHz.

Each input is processed with a tunable quadrature down-converter. The resulting baseband I and Q signals are low-pass filtered and digitized with 12-bit precision at programmable sample rates up to 65 MHz.

The resulting four channels of digital sample data are available as inputs to the Xilinx Spartan 3 FPGA, which is programmable to perform signal processing or to serve as a configurable switch matrix to route data to the main board and up to two 4-channel digital down-converter Graychips (GC4016).

The main board supplies high-speed DMA, plus additional memory and programmable FPGA resources.

Features

- Mezzanine board – pairs with an EDT main board (in a PCI, PCI-X, or PCIe bus), which adds high-speed DMA, programmable FPGA resources, and memory
- Simultaneous L-band and IF analog-to-digital conversion (12-bit)
- L-band: 925 to 2175 MHz (66 MHz bandwidth) with 5 MHz tuning resolution
- IF: 65 to 225 MHz (46 MHz bandwidth) with 1 MHz tuning resolution
- FPGA: One programmable Xilinx Spartan 3 XC3S1500
- Graychips: Two optional (TI GC4016) for 8-channel digital down-conversion
- Sample clock: Programmable to any frequency from 1 to 65 MHz
- Reference clock: Onboard 10 MHz TCXO or optional external reference input

Applications

- Satellite receiver
- Software-defined radio
- Surveillance / spectrum monitoring
- Digital tuning
- Test and measurement equipment
Specifications

Product Type
SRXL is a signal receiver mezzanine board for L-band and IF; it requires a main board.

FPGAs and Memory
One programmable FPGA (Xilinx Spartan 3 XC3S1500), plus FPGA and memory resources on main board

Graychips
Two programmable or optional none (T1 GC4016) for digital down-conversion

Sample Clock and Converter (A/D)
Sample clock tuning range / tuning word (DDS)
User-defined sample clock
Converter resolution
1 to 65 MHz / 32-bit word
From FPGA pin phase-locked to 10 MHz reference
12 bits

Data Rates
Data rates are dependent on data format and main board.

<table>
<thead>
<tr>
<th>Data Format (I/O)</th>
<th>General</th>
<th>Reference - External</th>
<th>L-band (925-2175 MHz, 5 MHz tuning resolution)</th>
<th>IF (65-225 MHz, 1 MHz tuning resolution)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal input impedance</td>
<td>50 Ω</td>
<td>75 Ω</td>
<td>75 Ω</td>
</tr>
<tr>
<td></td>
<td>Minimum return loss</td>
<td>12 dB</td>
<td>12 dB</td>
<td>12 dB</td>
</tr>
<tr>
<td>Gain control</td>
<td>Minimum RF</td>
<td>-</td>
<td>60 dB</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Minimum base band</td>
<td>-</td>
<td>19 dB</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Minimum variable</td>
<td>-</td>
<td>-</td>
<td>43 dB</td>
</tr>
<tr>
<td></td>
<td>Typical variable</td>
<td>-</td>
<td>-</td>
<td>60 dB</td>
</tr>
<tr>
<td>Signal level</td>
<td>Minimum usable</td>
<td>-10 dB</td>
<td>-72 dBm</td>
<td>-76 dBm</td>
</tr>
<tr>
<td></td>
<td>Maximum usable</td>
<td>10 dB</td>
<td>3 dBm</td>
<td>-19 dBm</td>
</tr>
<tr>
<td></td>
<td>Absolute maximum</td>
<td>16 dBm (with DC, if any)</td>
<td>10 dBm</td>
<td>10 dBm</td>
</tr>
<tr>
<td>Phase noise</td>
<td>At 40 KHz (measured)</td>
<td>-</td>
<td>-72 dB</td>
<td>-72 dB</td>
</tr>
<tr>
<td></td>
<td>At 10 KHz (measured)</td>
<td>-</td>
<td>-50 dB</td>
<td>-65 dB</td>
</tr>
<tr>
<td>Local Oscillators</td>
<td>Tuning ranges</td>
<td>-</td>
<td>925 to 2175 MHz</td>
<td>63 to 112 MHz or 125 to 225 MHz</td>
</tr>
<tr>
<td></td>
<td>Tuning step size</td>
<td>-</td>
<td>5 MHz</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Demodulators</td>
<td>Base band LP filter cutoff</td>
<td>-</td>
<td>4 to 33 MHz (-3 dB)</td>
<td>23 MHz</td>
</tr>
<tr>
<td></td>
<td>Transition band</td>
<td>-</td>
<td>42 dB/octave</td>
<td>24 dB/octave</td>
</tr>
<tr>
<td></td>
<td>Maximum IQ phase error</td>
<td>-</td>
<td>4 degrees</td>
<td>3 degrees</td>
</tr>
<tr>
<td></td>
<td>Maximum IQ gain error</td>
<td>-</td>
<td>1.2 dB</td>
<td>0.6 dB</td>
</tr>
</tbody>
</table>

Reference - Internal
Frequency
Nominal tolerance +/- 0.5 ppm at 25° C
Over temperature +/- 2.5 ppm at 0° to 75° C
Adjustment range +/- 3 ppm

<table>
<thead>
<tr>
<th>Connectors</th>
<th>Connector type</th>
<th>Reference - External</th>
<th>L-band 75 Ω</th>
<th>IF 75 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMB 50 Ω</td>
<td>F-type 50 Ω</td>
<td>12 dB</td>
<td>12 dB</td>
</tr>
</tbody>
</table>

Cabling
Consult EDT for purchase options.

Physical
Weight 3.6 oz. typical
Dimensions 6.6 x 4.2 x 0.5 in. (with a main board)

Environmental
Temperature Operating 0° to 40° C
Non-operating -40° to 70° C
Operating 1% to 90%, non-condensing at 40° C
Non-operating 95%, non-condensing at 45° C

Humidity
Operating 1% to 90%, non-condensing at 40° C
Non-operating 95%, non-condensing at 45° C

System and Software
For details on system requirements and EDT-provided software driver packages, see specifications for your EDT main board.

Support

EDT offers engineer-to-engineer customer support, from phone consultation to custom design of hardware, firmware, and software. Contact us for options and details.

Contact

Engineering Design Team (EDT), Inc.
1400 NW Compton Drive, Suite 315
Beaverton, Oregon 97006
800-435-4320 / 503-690-1234 (phone)
503-690-1243 (fax)
www.edt.com

Ordering Options

- Main board: PCI SS / PCI GS / PCIe8 LX
- Graychips: 0 / 2

Bold is default. For more options, see main board datasheet. Ask about custom options.